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1. Introduction

It is a well known fact that in order to couple the Type I or Heterotic superstrings to

a generic background, the gauge groups must be SO(32) or E8 × E8 in order to have a

theory free of gauge and Lorentz anomalies. This condition is supplemented with an α′

correction to the 3-superform H, defined as the exterior derivative of the Kalb-Ramond

2-superform B. The mechanism described is known as the Green-Schwarz mechanism [1]

and the form of the corrections are of Yang-Mills and Lorentz Chern-Simons type, which is

related to the form of the counter-terms that cancel the anomalies. It is worth to note that

this mechanism for the cancellation of anomalies was discovered using the low energy limit

of superstrings. However, Hull and Witten [2] noted the necessity of the Chern-Simons

modifications in order to cancel the sigma model for the Heterotic superstring.

To describe superstrings in a generic background, one has at disposal the Ramond-

Neveu-Schwarz (RNS) formalism and the Green-Schwarz (GS) formalism. However in the

first, whose sigma model was the one used in [2], it is difficult to incorporate space-time

fermions, so some elements are lacking; while in the second one can only quantize in the

light-cone gauge, loosing the manifest symmetries. Nevertheless, there is one more descrip-

tion known as the Pure Spinor (PS) formalism [3], in which a superstring can be described

in a generic background [4] and does not suffer of those difficulties. The quantization of

the superstring in the PS formalism is performed through a BRST charge QBRST, which is

nilpotent because of the pure spinor condition, to be defined later on. As shown in [4], the
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classical BRST invariance impose some constraints on the background fields, in particular

on the components of H; putting them on-shell. Before pure spinors were used to describe

superstrings, integrability along pure spinor lines in superspace and loop superspace al-

lowed to find the super Yang-Mills and supergravity equations of motion in ten dimensions

respectively [5]. Because of its nature, the pure spinor sigma model is a proper description

for performing perturbative computations. Using this description it has been possible to

compute the beta functions for the Heterotic [6] and Type II Superstring [7], showing that

the classical BRST invariance implies in the conformal invariance.1

Because in the PS formalism one can quantize in a Super-Poincare invariant manner,

one could attempt to compute α′ corrections to the constrains in the background fields men-

tioned in the last paragraph. In particular, one can look for Chern-Simons type corrections

to the 3-superform H as mentioned in the first paragraph. This paper is concentrated

in the Yang-Mills Chern-Simons correction to H, which was also shown in [9] and [10] to

imply the correct coupling of N = 1 supergravity to N = 1 super Yang-Mills. Specifically,

it will be computed corrections to the classical constraints on H by checking the nilpotency

of the BRST charge at one-loop level. It will be shown that it is a key aspect to add local

counter-terms in the action to preserve the BRST invariance at the quantum level. Those

counter-terms amounts to redefinitions of the space-time metric and the spin connection.

The redefinition of the space-time metric was noted by Sen [11]. Furthermore Hull and

Townsend [12] showed that they were necessary to preserve the world sheet supersymmetry

in the heterotic string. Since the supervielbein EM
α(Z) appears as one of the superfields

in the pure spinor sigma model, redefinitions of this superfield are in accordance with re-

definition of the space-time metric, and as will be shown, they are important to check the

BRST invariance at one-loop.

The structure of this paper is as follows. In section 2 a brief introduction to the PS

formalism is given. In section 3 the results of [4] and [13] concerning the nilpotency of

QBRST and holomorphicity of the BRST current at the lowest order in α′ are reobtained,

by performing a tree-level computation. In section 4 it is performed a one-loop compu-

tation to find the Yang-Mills Chern-Simons correction to the 3-superform H, explaining

the computations in a detailed way, as well as the counter-terms introduced. In section 5

the work is concluded. In the appendix are included the results of the background field

expansion used in the computation.

2. Review of the pure spinor formalism

The action for the heterotic superstring in the pure spinor formalism [3] is given by

S =
1

2πα′

∫
d2z

(
1

2
∂Xm∂Xm + pα∂θ

α + b̄∂c̄

)
+ Sλ + SJ , (2.1)

where the worldsheet variables (Xm, θα, pα), with m = 0. . .9, α = 1. . .16, describe the

N = 1 D = 10 superspace. pα is the conjugate momentum to θα. This formalism takes its

1For further studies of the pure spinor formalism in a curved background see [8].

– 2 –



J
H
E
P
0
9
(
2
0
0
8
)
0
7
8

name from the bosonic spinor λα, which is constrained to satisfy the pure spinor condition

λα(γm)αβλ
β = 0, where γm are 16 × 16 symmetric ten-dimensional gamma matrices. The

pure spinor part of the action, denoted by Sλ, is the action for a free β γ system, where

the conjugate momentum to λα is denoted by ωα. SJ denotes the action for the heterotic

right-moving currents and (b̄, c̄) are the right moving Virasoro ghosts. For the purpose of

this paper, it is worth to note that the Lorentz currents Nab = 1
2λγ

abω and ghost number

current J = λαωα satisfy

Nmn(y)Npq(z) → α′ η
p[nNm]q(z) − ηq[nNm]p(z)

y − z
− 3α′2 η

m[qηp]n

(y − z)2
,

J(y)J(z) → −
4

(y − z)2
. (2.2)

These currents have OPEs with the pure spinors

Nmn(y)λα(z) →
1

2
α′(γmn)αβ

λβ(z)

y − z
, J(y)λα(z) → α′λ

α(z)

y − z
, (2.3)

while the right-moving currents satisfy

J
I
(y)J

J
(z) → α′ f

IJ
KJ

K
(z)

ȳ − z̄
+ α′2 δIJ

(ȳ − z̄)2
. (2.4)

Physical states are defined as vertex operators in the cohomology of the BRST charge

Q =
∮
dzλαdα, where dα are the worldsheet variables corresponding to N = 1 D = 10

space-time supersymmetric derivatives.

3. Lowest order constraints in α
′

In this section are computed the constraints coming from the nilpotency of the BRST

charge and holomorphicity of the BRST current at tree level.

The action which describes the Heterotic Superstring in a curved background can be

obtained by adding the massless vertex operators to the flat action and then covariantizing

with respect to the D = 10 N = 1 super-reparameterization invariance [4]. The action is

as follows

S =
1

2πα′

∫
d2z

(
1

2
ΠaΠ

b
ηab +

1

2
ΠAΠ

B
BBA + dαΠ

α
+ ΠAJ

I
AAI + dαJ

I
Wα

I

λαωβJ
I
UIα

β + λαωβΠ
C
ΩCα

β

)
+ Sλ + SJ + SΦ, (3.1)

where ΠA = ∂ZMEA
M (Z), Π

A
= ∂ZMEA

M (Z) and EA
M (Z) is a supervielbein: GMN (Z) =

Ea
MEb

Nηba. Z
M denote the coordinates for the D = 10 N = 1 superspace (Xm, θµ) with

m = 0, . . ., 9 and µ = 1, . . ., 16. Sλ and SJ , as before, are the actions for λ and J
I

=
1
2K

I
ABψ̄

Aψ̄B respectively, with A,B = 0, . . ., 32. SΦ is the action for the dilaton coupling

to the worldsheet scalar curvature. The nilpotency of the BRST charge is guaranteed in a

flat background because of the pure spinor condition. Nevertheless, when the superstring
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is coupled to the curved background, the background fields must be constrained in order to

maintain this nilpotency [4, 13]. One can find these constrains by performing a tree level

computation. To set that, one perform a background field expansion [14] by expliting every

worldsheet field into a classical and quantum part, where the classical part is assumed to

satisfy the classical equation of motion and the quantum part will allow to find propagators

and form loops. Specifically, the following notation for the splitting will be used

ZM = XM
0 + YM , dα = dα0 + d̂α,

λα = λα
0 + λ̂α,

ωα = ωα0 + ω̂α,

ψ̄A = ψ̄A
0 + ˆ̄ψA. (3.2)

So the expansion for the term 1
2πα′

∫
d2z 1

2∂Z
M∂ZNGNM in (3.1) in second order of the

quantum fiels is

1

2πα′

∫
d2z

(
1

2
∂Y a∂Y bηab −

1

2
∂Y aY BΠ

C
T̃CB

a −
1

2
∂Y aY BΠC T̃CB

a +
1

4
∂Y BY CΠ

a
T̃CB

a

+
1

4
∂Y BY CΠaT̃CB

a +
1

2
Y BY CΠDT̃DC

aΠ
E
T̃EB

a −
1

4
Y BY CΠ(aΠ

D)
T̃DCB

a

)
,

(3.3)

where T̃ is the part of the torsion which only contains derivatives of the vielbein: T̃MN
A =

∂[MEN ]
A and T̃DCB

A = −T̃DC
E T̃EB

A +(−)CD∇C T̃DB
A. Repeated bosonic indices in (3.3)

are assumed to be contracted with the Minkowski metric. On the other hand, the expansion

for 1
2πα′

∫
d2zdα∂Z

MEM
α is

1

2πα′

∫
d2z

(
d̂α∂Y

α − d̂αY
BΠ

C
T̃CB

α +
1

2
(dα0 + d̂α)∂Y BY C T̃CB

α

−
1

2
(dα0 + d̂α)Y BΠ

D
Y C(∂C T̃DB

α + T̃CD
ET̃EB

α)

+
1

2
d̂αΠ

D
YMY N∂NEM

BT̃BD
α

)
(3.4)

In the subsequent sections, the 0 subindex will be dropped off. The expansions for the

remaining terms in the expansion of the action (3.1) are written in the appendix. From

the first term in the last two expressions it can be read the propagators

Y a(x, x̄)Y b(z, z̄) → −α′ηablog|x− z|2, d̂α(x)Y β(z) →
α′δα

β

x− z
. (3.5)

3.1 Nilpotency at tree level

The propagators (3.5) allows to compute the conditions for the nilpotency of QBRST per-

turbatively in α′. In fact, one can easily compute a tree level diagram using the second

propagator and the fifth term in (3.3) expanding e−S in a series power, giving as a result

λαdα(w)λβdβ(z) =
1

2
α′ 1

w − z
λαλβΠcTβα

c(z). (3.6)
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Initially one is interested in computing the tree leve diagrams coming from terms in

the expansions with ∂Y AY B, since they will give rise to the same kind of pole as in (3.6).

So, the contributions to the pole (w − z)−1 will be

1

2

α′

w − z
λαλβΠc(Tβα

c +Hc
βα)(z) +

1

2

α′

w − z
λαλβΠγHγβα

+
α′

w − z
λαλβdγTβα

γ(z) +
α′

w − z
λαλβλγωδRβαγ

δ(z). (3.7)

In this notation, the Torsion superfield Tβα
γ is given by

Tβα
γ = T̃βα

γ − Ωβα
γ − Ωαβ

γ , (3.8)

while the curvature superfield is given by

Rαβγ
δ = DαΩβγ

δ +DβΩαγ
δ + Ωαγ

ǫΩβǫ
δ + Ωβγ

ǫΩαǫ
δ + T̃αβ

EΩEγ
δ, (3.9)

where Dα denotes the supersymmetric derivative. There are also other possible tree level

contractions of λαdα(w)λβdβ(z) with terms including ∂Y AY B which will lead to

−
1

2
α′ w̄ − z̄

(w − z)2
λαλβΠ

c
(Tβα

c −Hc
αβ)(z) +

1

2
α′ w̄ − z̄

(w − z)2
λαλβΠ

γ
Hγαβ(z) (3.10)

−α′ w̄ − z̄

(w − z)2
λαλβJ

I
FαβI .

In this notation the field-strength superfield is given by

FαβI = DαAβI +DβAαI + fI
JKAαJAβK + T̃αβ

CACI . (3.11)

To compute the tree-level diagrams that give rise to the above result, one need to

compute the integral

∫
d2x

1

(w − x)(x− z)2
= −

∫
d2x∂x

(x̄− w̄)

x− w

1

(x− z)2
= 2π

w̄ − z̄

(w − z)2
(3.12)

From (3.7) and (3.10) it is deduced that the conditions for the nilpotency of QBRST

at the lowest order in α′ are

λαλβTαβ
C = 0, λαλβHCαβ = 0, λαλβFαβI = 0, λαλβλγωδRβαγ

δ = 0. (3.13)

These are the same set of constraints found in [4] and [13].

3.2 Holomorphicity at tree level

To compute the conditions for holomorphicity of the BRST current ∂j = ∂(λαdα) = 0, one

must know the expansion up to first order in Y α of the sigma model action. This expansion

for the term 1
2πα′

∫
d2z 1

2∂Z
M∂ZNGNM is

1

4πα′

∫
d2[Πa∂Y bηab + Π

a
∂Y bηab + ΠbΠ

D
Y C T̃CD

aηab + ΠDΠ
a
Y C T̃CD

bηab]. (3.14)
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The conditions for holomorphicity will appear as conditions for vanishing to the in-

dependent couplings ΠaΠ
b
, ΠαΠ

b
and so on. For example, forming a tree level diagram

contracting ∂dα in ∂j with the third term in (3.14), it is obtained 1
2λ

αΠbΠ
C
T̃Cα

dηbd. Fol-

lowing this procedure with all the terms in the expansion written in the appendix up to

order Y , it is found

1

2
λα[−ΠbΠ

c
(Tαb

dηdc + Tαc
dηbd +Hcbα) + ΠβΠ

c
(Tβαb −Hβαb)

+ΠbΠ
γ
(Tγαb +Hγαb) − ΠβΠ

γ
Hγβα − 2dβΠ

c
Tcα

β − 2dβΠ
γ
Tγα

β

+2ΠbJ
I
FbαI + 2ΠβJ

I
FβαI + 2λβωγΠ

d
Rdαβ

γ

−2dβJ
I
(DαW

β
I −W β

J AαKfI
JK − UIα

β)

+2λβωγJ
I
(Ωαδ

γUIβ
δ − Ωαβ

δUIδ
γ + UJβ

γAαKfI
JK

−W δ
IRδαβγ −DαUIβ

γ)] = 0.

Since Π
α

is related to J
I

through Π
α

= −J
I
Wα

I by using the equation of motion for the

worldsheet field dα in (3.1), one arrives at the following set of constrints for holomorphicity

of the BRST current at the lowest order in α′

Tα(bc) = −Hαbc = Tαβ
c −Hαβ

c = Tcα
β = 0, λαλβRdαβ

γ = 0,

FαβI = −
1

2
W γ

I Hγαβ, FαbI = −W γTγαb,

∇αW
β
I − Tαβ

γW γ
I = UIα

β, λαλβ(∇αUIα
γ +Rαγβ

δW γ
I ) = 0. (3.15)

This was the same set of constraints found in [4] and [13].

4. Yang-Mills Chern-Simons corrections

In this section α′ corrections to the nilpotency constraints (3.13) will be computed. In the

first subsection it is explained how to compute all of the twenty possible contributions to

the nilpotency of the BRST charge. In the second subsection, it will be explained how,

adding some counter-terms, one can find the Yang-Mills Chern-Simons 3−form.

4.1 One-loop corrections to the constraints

In the expansion for the ΠAJ
I
AAI term, the following will play a role in the compu-

tation: ΠAY B
0 J

I
2(∂BAAI + T̃BA

CACI)(x) and ∂Y AJ
I
2AAI(y). Contracting them with

λαdα(w)λβdβ(z) one can form a 1-loop diagram

(4.1)

– 6 –
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The dashed lines denote background fields while the continuous lines denote the con-

tractions using the propagators. So one can compute how these terms contribute to the

nilpotency of QBRST . To determine the coefficient for this diagram, note that there is an

1/2 from the expansion of exp[−S] and there is a factor of 2 coming from the possible ways

to put the superfields at x or y. Denoting the integration over the world-sheet fields by∫
[Dwsf ], it is found

λαdα(w)λβdβ(z)I =
1

(2πα′)2

∫
[Dwsf ]

∫
d2xd2yλαd̂α(w)λβ d̂β(z)

ΠE
0 Y

γ(DγAEI + T̃γE
FAFI)(x)∂Y

δAδJ (y)J
I
2(x)J

J
2 (y)

=
α′2

(2π)2
λαλβΠC

0 AαI(DβACI +T̃βC
DADI)(z) ×

×

∫
d2xd2y

1

(w − x)2(z − y)

1

(x̄− ȳ)2

−
α′2

(2π)2
λαλβΠC

0 AβI(DαACI + T̃αC
DADI)(z) ×

×

∫
d2xd2y

1

(w − y)(z − x)2
1

(x̄− ȳ)2
, (4.2)

where J
I
2(x̄)J

J
2 (ȳ) → (α′)2δIJ

(x̄−ȳ)2 . The second line in the last equation is obtained from minus

the first by interchanging α with β and w with z. So, just one of the integrals will be

computed.

∫
d2xd2y

1

(w − x)2(z − y)(x̄− ȳ)2
=

∫
d2xd2y

1

(w − x)2(z − y)
∂ȳ

1

x̄− ȳ

= 2π

∫
d2xd2y

δ2(y − z)

(w − x)2(x̄− ȳ)

= 2π

∫
d2x

1

(w − x)2(x̄− z̄)
, (4.3)

where in the second step an integratetion by parts has been performed with respect to ȳ.

In the last integral one can integrate by parts with respect to x to obtain

∫
d2xd2y

1

(w − x)2(z − y)

1

(x̄− ȳ)2
= −

(2π)2

w − z
. (4.4)

Then a first contribution to the check of nilpotency will be

λαdα(w)λβdβ(z)I = −2α′2 λ
αλβ

w − z
ΠC

0 AβI(DαACI + T̃αC
DADI)(z). (4.5)

A second contribution comes from contracting λαdα(w)λβdβ(z) with ∂Y γJ
I
2AγI(x)×

– 7 –
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∂Y δJ
J
2AδJ (y) as shown in the diagram.

(4.6)

To determine the coefficient of this diagram, note that there is an 1/2 coming from the

Taylor expansion of exp(−S). So it is found

λαdα(w)λβdβ(z)II =
α′2

2

λαλβ(z)

(2π)2

∫
d2xd2y

[
AαI(x)AβI(y)

(w − x)2(z − y)2
−

AβI(x)AαI(y)

(w−y)2(z‖ −x)2

]
1

(x̄−ȳ)2

(4.7)

The second term in the integrand is obtained from minus the first by interchanging w

with z and α with β. The integral left to solve is

Γ =

∫
d2xd2y

AαI(x)AβI(y)

(w − x)2(z − y)2(x̄− ȳ)2

= −

∫
d2xd2y

Π
C
∂CAαI(x)AβI(y)

(ȳ − x̄)(w − x)2(z − y)2

+

∫
d2xd2y

AαI(x)AβI(y)∂xδ
2(x− w)

(ȳ − x̄)(z − y)2
, (4.8)

where it has been integrated by parts with respect to x̄. The first and second integral on

the right hand side of (4.8) can be integrated by parts with respect to y and x to obtain

Γ = 2π

∫
d2xd2y

Π
C
∂CAαI(x)AβI(y)δ

2(y − x)

(z − y)(w − x)2

−2π

∫
d2xd2y

ΠC∂CAαI(x)AβI(y)δ
2(x−w)

(ȳ − x̄)(z − y)2
. (4.9)

Evaluating the superfields in z, using (3.12) in the first integral and integrating by

parts with respect to y in the second, one obtains

Γ = −(2π)2
w̄ − z̄

(w − z)2
Π

C
∂CAαIAβI(z) −

(2π)2

w − z
ΠC∂CAαIAβI(z). (4.10)

Then

λαdα(w)λβdβ(z)II = −α′2 w̄ − z̄

(w − z)2
λαλβΠ

C
∂CAαIAβI(z) −

α′2

w − z
λαλβΠC∂CAαIAβI(z)

+α′2 w̄ − z̄

(w − z)2
∂λαλβAαIAβI +

α′2

w − z
∂λαλβAαIAβI(z) (4.11)

– 8 –
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A third contribution to the nilpotency property comes from contractions of ΠA
0 J

I
2AAI ,

twice ∂Y AJ
I
2AAI and λαdα(w)λβdβ(z) giving rise to the diagram

(4.12)

Since one is at order S3 in the expansion of e−S , there is an 1
3! and also a factor of

3 from the possible ways to put the superfields at x, y and u, so there will be a −1/2

coefficient in front:

λαdα(w)λβdβ(z)III = −
1

2(2πα′)3

∫
[Dwsf ]

∫
d2xd2yd2uλαd̂α(w)λβ d̂β(z)

ΠC
0 J

I
2ACI(x)∂Y

DJ
J
2ADJ(y)∂Y EJ

K
2 AEK(u).

= −
1

2(2π)3α′
λαλβΠC

0 ACIAγJAδK(z)

∫
d2xd2yd2u

(
δα

γδβ
δ

(w−y)2(z−u)2

−
δα

δδβ
γ

(w − u)2(z − y)2

)
J

I
2(x)J

J
2 (y)J

K
2 (u). (4.13)

It is not hard to verify that

J
I
2(x)J

J
2 (y)J

K
2 (u) =

(α′)3f IJK

(x̄− ȳ)(ȳ − ū)(x̄− ū)
+ . . ., (4.14)

where by . . . is meant less singular poles which are not important in this computation.

Then the type of integrals that must be computed are

Γ1 =

∫
d2xd2yd2u

1

(w − y)2(z − u)2(x̄− ȳ)(ȳ − ū)(x̄− ū)
. (4.15)

The integral in x gives

∫
d2x

1

(x̄− ȳ)(x̄− ū)
=

∫
d2x∂x

(
x− y

x̄− ȳ

)
1

x̄− ū
= −2π

y − u

ȳ − ū
, (4.16)

so (4.15) yields

Γ1 = −2π

∫
d2yd2u∂y

(
1

w − y

)
y − u

(z − u)2(ȳ − ū)2
. (4.17)

Integrating by parts in y, ȳ and then in u it is found Γ1 = (2π)3/(w− z). In this way (4.7)

gives

λαdα(w)λβdβ(z)III = −(α′)2
λαλβ

w − z
f IJKΠC

0 ACIAαJAβK(z). (4.18)
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Note that a fourth loop could be formed with 1
4∂Y

αY βΠc(Tβα
c +Hc

βα), d̂αJ
I
2W

α
I and

∂Y αJ
I
2AαI as shown in the diagram below.

(4.19)

In this case, one is also at the order S3, so there is an 1
3! which is cancelled by the

symmetry factor responsible for the localization of the superfields, either at x, y or u. The
1
4 coming from the coefficient of the term with Πc is cancelled by a symmetry factor of the

possible ways of contraction:

λαdα(w)λβdβ(z)IV = −
α′2

(2π)2
λαλβΠc(Tδα

c +Hc
δα)W δ

I AβI(z) ×

×

∫
d2xd2yd2u

δ2(x− w)

(z − u)2(y − x)(ȳ − ū)2
(4.20)

Integrating x one has to solve

∫
d2yd2u

1

(z − u)2(y − w)(ȳ − ū)2
= −2π

∫
d2yd2u

δ2(y − w)

(ū− ȳ)(z − u)2
= −

(2π)2

w − z
. (4.21)

Then

λαdα(w)λβdβ(z)IV =
α′2

w − z
λαλβΠc(Tαδ

c +Hc
αδ)W

δ
IAβI(z) (4.22)

Considering the same last diagram but with the vertex 1
4ΠγHγβα instead of 1

4Πc(Tβα
c+

Hβα
c), gives a fifth contribution to the coupling to Πγ

λαdα(w)λβdβ(z)V =
α′2

w − z
λαλβΠγHγαδW

δ
IAβI(z) (4.23)

A sixth contribution can be formed with 1
4Πc∂Y AY B(T̃BA

c + Hc
BA) and twice

∂Y AJ
I
2AAI :

(4.24)
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There are 8 possible ways of making the contractions, a 3 factor from the possible ways

to put the superfields at x, y or u, an 1/3! because one is at S3 in the expansion, and the

factor of 1/4 of the Πc term gives a one coefficient:

λαdα(w)λβdβ(z)VI = −
α′2

(2π)2
λαλβΠc(T̃dα

c +Hc
dα)AdIAβI(z) ×

×

∫
d2xd2yd2u

δ2(x− w)

(y − x)(z − u)2
1

(ȳ − ū)2.
(4.25)

The integral is the same as in (4.20), so the answer is

λαdα(w)λβdβ(z)VI =
α′2

w − z
λαλβΠc(T̃dα

c +Hc
dα)AdIAβI(z). (4.26)

In the same way, the last diagram but with the vertex 1
4ΠγHγBA instead of 1

4Πc(TBA
c +

HBA
c) leads to a seventh contribution

λαdα(w)λβdβ(z)VII =
α′2

w − z
λαλβΠγHγdαAdIAβI(z). (4.27)

An eight contribution can be formed with −1
2∂Y

aY βΠC T̃Cβ
a and twice ∂Y AJ

I
2AAI :

(4.28)

There are 4 possible ways of making the contractions, a 3 factor from the possible ways

to put the superfields at x, y or u, an 1
3! because one is at S3 order in the expansion and

a factor of 1/2 of the Πa coefficient, giving at the end a 1 coefficient:

λαdα(w)λβdβ(z)VIII = −
α′2

(2π)3
λαλβΠC T̃Cα

dAβIAdI(z) ×

×

∫
d2xd2yd2u

−2πδ2(u− x)

(w − x)(z − y)2
1

(ū− ȳ)2
. (4.29)

Integrating in u, the integral one has to solve is

∫
d2xd2y

1

(w − x)(z − y)2(x̄− ȳ)2
= 2π

∫
d2xd2y

δ2(x− w)

(z − y)2(ȳ − x̄)
=

(2π)2

w − z
, (4.30)

then

λαdα(w)λβdβ(z)VIII =
α′2

w − z
λαλβΠC T̃Cα

dAβIAdI(z). (4.31)

Let’s consider the couplings to Π
A
.
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A diagram like (4.19) can be formed with 1
4Π

c
∂Y AY B(T̃BA

c −Hc
BA), ∂Y AJ

I
2AAI and

d̂αJ
I
2W

α
I . There are 4 possible ways of making the contractions, a 6 factor from the possible

ways to put the superfields at x, y or u, an 1
3! because one is at S3 order in the expansion

and a factor of 1/4 of the Π
c

coefficient, giving at the end a 1 coefficient to this ninth

contribution:

λαdα(w)λβdβ(z)IX =
α′2

(2π)3
λαλβΠ

c
(Tδα

c −Hc
δα)W δ

IAβI(z) ×

×

∫
d2xd2yd2u

1

(w − x)2(z − u)2(y − x)(ȳ − ū)2
(4.32)

Integrating ȳ by parts, one is left to solve the integral

∫
d2xd2yd2u

δ2(y − x)

(w − x)2(z − u)2(ū− ȳ)
= 2π

∫
d2x

1

(w − x)(z − x)2
. (4.33)

The right hand side in the last equation is the same as (3.12), so

λαdα(w)λβdβ(z)IX = −α′2 w̄ − z̄

(w − z)2
λαλβΠ

c
(Tδα

c −Hc
δα)W δ

I AβI(z). (4.34)

In the same way, considering vertex −1
4Π

γ
HγBA instead of −1

4Π
c
(T̃BA

c −HBA
c) leads

to the tenth contribution

λαdα(w)λβdβ(z)X = α′2 w̄ − z̄

(w − z)2
λαλβΠ

γ
HγδαW

δ
IAβI(z) (4.35)

An eleventh contribution comes from a diagram like (4.24) which can be formed with
1
4Π

c
∂Y AY B(T̃BA

c −Hc
BA) and twice ∂Y A∂J

I
2AAI . There are 8 possible ways of making

the contractions, a 3 factor from the possible ways to put the superfields at x, y or u, an
1
3! because one is at S3 order in the expansion and a factor of 1/4 of the Π

c
coefficient,

giving at the end a + coefficient:

λαdα(w)λβdβ(z)XI =
α′2

(2π)3
λαλβΠ

c
(T̃dα

c −Hc
dα)AdIAβI(z) ×

×

∫
d2xd2yd2u

1

(w − x)2(z − u)2(y − x)(ū− ȳ)
. (4.36)

The last integral is the same as the integral in (4.32), so the result is

λαdα(w)λβdβ(z)XI = −α′2 w̄ − z̄

(w − z)2
λαλβΠ

c
(T̃dα

c −Hc
dα)AdIAβI(z). (4.37)

In the same way, a twelfth contribution comes from considering the vertex −1
4Π

γ
HγBA

instead of the vertex 1
4Π

c
(T̃BA

c −HBA
c), leading to

λαdα(w)λβdβ(z)XII = α′2 w̄ − z̄

(w − z)2
λαλβΠ

γ
HγdαAdIAβI(z). (4.38)
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Another diagram like (4.28) can be formed with −1
2∂Y

aY βΠ
C
T̃Cβ

a, ∂Y aJ
I
2AaI and

∂Y αJ
I
2AαI , giving rise to a thirteenth contribution

λαdα(w)λβdβ(z)XIII = −α′2 w̄ − z̄

(w − z)2
λαλβΠ

C
T̃Cα

dAdIAβI(z). (4.39)

A fourteenth contribution and the last for the couplings to Π
A

can be formed with

−d̂αY
BΠ

C
T̃CB

α and twice ∂Y AJAAI :

(4.40)

giving as result

λαdα(w)λβdβ(z)XIV = 2α′ w̄ − z̄

(w − z)2
λαλβΠ

C
AβI T̃Cα

γAγI (4.41)

Let’s consider the couplings to J
I
0

A fifteenth contribution to the nilpotency will come from a diagram formed with
1
2∂Y

AY BJ
I
0(∂[BAA]I + T̃BA

CACI), d̂αJ
I
2W

α
I and ∂Y αJ

I
2AαI :

(4.42)

There are 4 possible ways of making the contractions, a 6 factor from the possible ways

to put the superfields at x, y or u, an 1
3! because one is at the S3 order in the expansion

and a factor of 1/2 of the J
I
0 coefficient, giving at the end a 2 factor:

λαdα(w)λβdβ(z)XV =
2α′2

(2π)3
λαλβJ

I
0(D(γAα)I + T̃γα

CACI)W
γ
JAβJ(z) ×

×

∫
d2xd2yd2u

1

(w − x)2(z − u)2(y − x)(ū− ȳ)2
. (4.43)

The last integral is again the same as in (4.32), so the result is

λαdα(w)λβdβ(z)XV = −2α′2 w̄ − z̄

(w − z)2
λαλβJ

I
0(D(γAα)I + T̃γα

CACI)W
γ
JAβJ(z). (4.44)
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A sixteenth contribution can be formed with 1
2∂Y

AY BJ
I
0(∂[BAA]I + T̃BA

CACI) and

twice ∂Y AJ
I
2AAI :

(4.45)

There are 8 possible ways of making the contractions, a 3 factor from the possible ways

to put the superfields at x, y or u, an 1
3! because one is at the S3 order in the expansion

and a factor of 1/2 of the J
I
0 coefficient, giving at the end a 2 coefficient:

λαdα(w)λβdβ(z)XVI = 2
α′2

(2π)3
λαλβJ

I
0(∂[cAα]I + T̃cα

DADI)AcJAβJ(z) × (4.46)

×

∫
d2xd2yd2u

1

(w − x)2(z − u)2(y − x)(ȳ − ū)2
,

which contains the same integral as before, so the result is

λαdα(w)λβdβ(z)XVI = −2α′2 w̄ − z̄

(w − z)2
λαλβJ

I
0(∂[cAα]I + T̃cα

DADI)AcJAβJ(z). (4.47)

Finally, let’s consider the couplings to dα.

A seventeenth contribution can be formed with 1
2dα∂Y

βY γT̃γβ
α, d̂αJ

I
2W

α
I and

∂Y αJ
I
2AαI :

(4.48)

There are 4 possible ways of making the contractions, a 6 factor from the possible ways

to put the superfields at x, y or u, an 1
3! because one is at the S3 order in the expansion

and a factor of 1/2 of the dα coefficient, giving at the end a 2 coefficient:

λαdα(w)λβdβ(z)XVII = −2
α′2

(2π)2
λαλβdγ T̃δα

γW δ
I AβI(z) ×

×

∫
d2xd2yd2u

δ2(x− w)

(z − u)2(y − x)(ȳ − ū)2
(4.49)
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Integrating x, the integral that is left to solve is

∫
d2yd2u

1

(z − u)2(y − w)(ȳ − ū)2
= −2π

∫
d2yd2u

δ2(y − w)

(ū− ȳ)(z − u)2
= −

(2π)2

w − z
, (4.50)

So,

λαdα(w)λβdβ(z)XVII =
2α′2

w − z
λαλβdγT̃δα

γW δ
IAβI(z). (4.51)

An eighteenth contribution can be formed with 1
2dα∂Y

BY C T̃CB
α and twice ∂Y AJ

I
2AAI :

(4.52)

There are 8 possible ways of making the contractions, a 3 factor from the possible ways

to put the superfields at x, y and u, an 1
3! because one is at the S3 order in the expansion

and a factor of 1/2 of the dα coefficient , giving a 2 coefficient:

λαdα(w)λβdβ(z)XVIII = 2
α′2

(2π)2
λαλβdγ T̃cα

γAcIAβI(z) ×

×

∫
d2xd2yd2u

δ2(x− w)

(z − u)2(y − x)(ȳ − ū)2
. (4.53)

This integral is the same as in (4.50), so the result is

λαdα(w)λβdβ(z)XVIII = −
2α′2

w − z
λαλβdγ T̃cα

γAcIAβI(z). (4.54)

Because of the pure spinor condition, the action is invariant under δωα = (Λbγ
bλ)α,

so UIα
β = UIδα

β + 1
4UIcd(γ

cd)α
β. It can be formed a nineteenth one-loop diagram by

contracting JJ
I
2UI(x) with ∂Y αJ

I
2AαI :

(4.55)

giving the contribution

λαdα(w)λβdβ(z)XIX = −2
α′2

w − z
λαλβdγδα

γAβIUI (4.56)
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Similarly, a diagram like (4.55) can be formed contracting 1
2N

abJ
I
2UIab(x) with ∂Y αJ

I
2AαI ,

giving as contribution

λαdα(w)λβdβ(z)XX = −
1

2

α′2

w − z
λαλβdγ(γef )α

γUIefAβI (4.57)

Now, the results will be summarized by adding up the twenty one-loop contributions

to the tree level constraints. Each independent worldsheet coupling will receive corrections,

as indicated below:

Corrections to the the coupling to Πc

1

2

α′

w − z
λαλβΠc[(Tβα

c+Hc
βα)−4α′AβI(DαAcI +T̃αc

DADI)+2α′AβI∂cAαI (4.58)

−2α′f IJKAcIAαJAβK + 2α′(Tαδ
c +Hc

αδ)W
δ
I AβI

+2α′(Tdα
c + Tcα

eηed +Hc
dα)AdIAβI ](z).

Corrections to the coupling to Π
c

−
1

2
α′ w̄ − z̄

(w − z)2
λαλβΠ

c
[(Tβα

c −Hc
αβ) − 2α′AβI∂cAαI + 2α′(Tδα

c −Hc
δα)W δ

IAβI (4.59)

+2α′(Tdα
c + Tcα

eηed −Hc
dα)AdIAβI − 4α′AβI T̃cα

γAγI ](z).

Corrections to the coupling to Πγ

1

2

α′

w − z
λαλβΠγ [Hγβα − 4α′AβI(DαAγI + T̃αγ

DADI)

−2α′AβIDγAαI − 2α′f IJKAγIAαJAβK

+2α′HγαδW
δ
IAβI + 2α′(Tγαd −Hγαd)AdIAβI ](z). (4.60)

Corrections to the coupling to Π
γ

1

2
α′ w̄ − z̄

(w − z)2
λαλβΠ

γ
[Hγαβ − 2α′AβIDγAαI + 2α′HγδαW

δ
IAβI (4.61)

−2α′(Hγα
d + Tγα

d)AdIAβI + 4α′AβI T̃γα
δAδI ](z).

Corrections to the coupling to dγ

α′

w − z
λαλβdγ [Tβα

γ + 2α′T̃δα
γW δ

IAβI − 2α′T̃cα
γAcIAβI − 2α′UIα

γAβI ]. (4.62)

Corrections to the coupling to J
I
0

−α′ w̄ − z̄

(w − z)2
λαλβJ

I
[FαβI + 2α′(D(γAα)I + T̃γα

CACI)W
γ
JAβJ

+2α′(∂[cAα]I + T̃cα
DADI)AcJAβJ ](z). (4.63)
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4.2 Addition of counter-terms

Let’s now concentrate in finding the Yang-Mills Chern-Simons 3−form by adding appropi-

ate counter-terms. Keeping in mind the lowest order in α′ holomorphicity constraints

Tαbc + Tαcb = 0 = Hαbc; the conditions for nilpotency at one loop look like

From the coupling to Πc

λαλβ[(Tβα
c +Hc

βα) − 4α′AβI(DαAcI + T̃αc
DADI) + 2α′AβI∂cAαI (4.64)

−2α′f IJKAcIAαJAβK + 2α′(Tαδ
c +Hc

αδ)W
δ
I AβI ](z) = 0.

From the coupling to Π
c

λαλβ[(Tβα
c −Hc

αβ) − 2α′AβI∂cAαI (4.65)

+2α′(Tδα
c −Hc

δα)W δ
I AβI − 4α′AβI T̃cα

γAγI ](z) = 0

Adding (4.64) and (4.65) gives the condition

λαλβ [Tβα
c − 2α′AβI(DαAcI + T̃αc

DADI)

−α′f IJKAcIAαJAβK + 2α′Tαδ
cW δ

IAβI − 2α′AβI T̃cα
γAγI ] = 0. (4.66)

Substracting (4.64) and (4.65) gives the condition

λαλβ[Hc
βα − 2α′AβI(D[αAc]I + T̃αc

DADI)

−α′f IJKAcIAαJAβK + 2α′Hαδ
cW δ

I AβI + 2α′AβI T̃cα
γAγI ] = 0. (4.67)

Now, suppose that a counter-term of the form K1

2π

∫
d2z∂ZM∂ZNANIAMI is added

to the action, where K1 is a constant to be determined. This amounts to redefine the

space-time metric GMN → GMN + 2α′K1AMIANI . The expansion of this counter-term

will contain the terms

SC =
K1

2π

∫
d2x

[
∂Y A∂Y BABIAAI + ∂Y AΠ

B
ABIY

C

(
∂CAAI +

1

2
T̃CA

DADI

)

+∂Y AΠ
B
Y C(∂CABI + T̃CB

DADI)AAI (4.68)

+ΠA∂Y BABIY
C(∂CAAI + T̃CA

DADI)

+ΠA∂Y BY C

(
∂CABI +

1

2
T̃CB

DADI

)
AAI

]

which can be used to compute tree level diagrams contracting with λαd̂α(w)λβ d̂β(z). How-

ever this diagrams will contribute to the order α′2, entering at the same foot as the one-loop

diagrams. The result of these tree level diagram is

−α′2K1
w̄ − z̄

(w − z)2
λαλβΠ

C
[ACI(D(αAβ)I + T̃αβ

DADI) − 2AβI(DαACI + T̃αD
DADI)](z)

α′2K1
λαλβ

w − z
ΠC [ACI(D(αAβ)I + T̃αβ

DADI) − 2AβI(DαACI + T̃αC
DADI)](z)

+2α′2K1
w̄ − z̄

(w − z)2
∂λαλβAαIAβI(z) + 2α′2 K1

w − z
∂λαλβAαIAβI(z) (4.69)
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Then, (4.64) and (4.65) will be modified respectively to

λαλβ[(Tβα
c +Hc

βα) − 4α′AβI(DαAcI + T̃αc
DADI) + 2α′AβI∂cAαI (4.70)

−2α′f IJKAcIAαJAβK + 2α′(Tαδ
c +Hc

αδ)W
δ
I AβI

+2α′K1AcI(D(αAβ)I + T̃αβ
DADI)

−4α′K1AβI(DαAcI + T̃αc
DADI)](z) = 0.

λαλβ[(Tβα
c −Hc

αβ)AβI∂cAαI + 2α′(Tδα
c −Hc

δα)W δ
I AβI (4.71)

−2α′ + 2α′K1AcI(D(αAβ)I + T̃αβ
DADI)

−4α′K1AβI(DαAcI + T̃αc
DADI) − 4α′AβI T̃cα

γAγI ](z) = 0

One can add (4.70) with (4.72) to obtain

λαλβ[Tβα
c − 2α′AβI(DαAcI + T̃αc

DADI)

−α′f IJKAcIAαJAβK + 2α′Tαδ
cW δ

IAβI

+2α′K1AcI(D(αAβ)I + T̃αβ
DADI)

−4α′K1AβI(DαAcI + T̃αc
DADI) − 2α′AβI T̃cα

γAγI ] = 0. (4.72)

If K1 = −1/2 and using the constraint λαλβFαβI = 0 one arrives at

λαλβ[Tβα
c + 2α′Tαδ

cW δ
IAβI − 2α′AβI T̃cα

γAγI ] = 0. (4.73)

Furthermore, forming a three-level diagram with d̂αY
βΠ

C
T̃Cβ

α and ∂Y α∂Y βAβIAαI

in (4.68), with precisely this value for K1 one can cancel the term proportional to

AβI T̃cα
γAγI in (4.73) and (4.67). Also, with this value for K1, the counter-terms in the

last line of (4.69) will cancel the contributions proportional to ∂λα and ∂λα in (4.11).

Note that it can be added a second counter-term of the form K2

2π

∫
d2zdα∂Z

MAMIW
α
I .

This amounts to redefining the supervielben EM
α → EM

α+α′K2AMIW
α
I . After expanding

this counter-term, one can form a tree-level diagrams contracting it with 1
4∂Y

γY δΠc(Tδγ
c+

Hδγ
c):

(4.74)

giving a contribution to the nilpotency

α′2K2
λαλβ

w − z
Πc(Tαγ

c +Hαγ
c)W γ

I AβI(z), (4.75)

while contractions with 1
4∂Y

γY δΠ
c
(Tδγ

c −Hδγ
c) will form the diagram

(4.76)
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which gives the contribution

−α′2K2
w̄ − z̄

(w − z)2
λαλβΠ

c
(Tαγ

c −Hαγ
c)W γ

I AβI . (4.77)

It can be easily checked that for K2 = −1, adding (4.75) and (4.77) to (4.64) and (4.65)

respectively; then λαλβTαβ
c will not receive α′ corrections, i.e. this second counter-term

cancels the α′ correction in (4.73); while the corrections for Hαβ
c are

λαλβ[Hc
βα − 2α′AβI(D[αAc]I + T̃αc

DADI) − α′f IJKAcIAαJAβK ] = 0. (4.78)

Now, the couplings to Πγ also receive corrections from the two counter-terms just

introduced. Some of these corrections come from the coupling to ΠC in (4.69) when C is

γ. Another correction comes from the tree-level diagram

(4.79)

Adding those corrections and using the holomorphicity constraint FαβI = −1
2W

γ
I Hγαβ,

it can be checked that the α′ corrections to the coupling to Πγ are

λαλβ

[
Hγβα − 2α′AβI

(
D(αAγ)I + T̃αγ

DADI

)
− α′f IJKAγIAαJAβK

]
= 0. (4.80)

Let’s now identify the Chern-Simons form. It can be used the lowest order constraints

in α′ coming from nilpotency condition λαλβFαβI = 0 to write (4.78) in the desired form.

Since λαλβ = λβλα

λαλβ

[
Hc

αβ − α′TrA[α

(
DβAc] +

1

2
T̃βc]

DAD]

)
− 2α′f IJKAcIAαJAβK

]
(z) = 0 (4.81)

Since 2f IJKAcIAαJAβK = 2
3TrA[cAαAβ] then

λαλβ

[
Hc

αβ − α′Tr

(
A[αDβAc] +

2

3
A[cAαAβ] +

1

2
A[αT̃βc]

DAD

)]
(z) = 0, (4.82)

which is the desired form. Similarly, (4.80) can be written as

λαλβ

[
Hαβγ − α′Tr

(
A(αDβAγ) +

2

3
A(γAαAβ) +

1

2
A(αT̃βγ)

DAD

)]
(z) = 0. (4.83)

Adding a further third counter-term − 1
2π

∫
d2zλαωβ∂Z

MAMIUIα
β, which amounts to

redefine ΩMα
β → ΩMα

β − α′AMIUIα
β; and thanks also to the other two counter-terms

added, can verify that neither λαλβTαβ
γ = 0 nor λαλβFαβI = 0 will receive α′ corrections.
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5. Conclusions

The process of finding the Yang-Mills Chern-Simons correction to the 3-superform H from

a string computation has been successful, in agreement with the studies of super Yang-

Mills and supergravity couplings [1, 9] and [10]. It is interesting to note that to preserve

worldsheet symmetries, some redefinitions of the superfields are in order. Particularly, it

was found that for the pure spinor sigma model, both EM
a and EM

α should be redefined.

The redefinition of the second one could not be found using the other descriptions for the

superstring.

The procedure used in this paper is suitable for computing the Lorentz Chern-Simons 3-

superform in a pretty similar way, because there is a direct analogy of the terms ∂ZMJ
I
AMI

and λαωβ∂Z
MΩMα

β in the action. In that case, diagrams formed by contractions of terms

with three quantum fields would contribute. Work in this direction is very interesting,

because a solution recently [15] has been claimed for the old debate about the inclusion

of the Lorentz Chern-Simons-form in N = 1 D = 10 supergravity and the α′ corrections

to the supergravity constraints. See [16 – 18] for the perturbative approach and [19 – 22] for

the non-perturbative approach. The pure spinor formalism was also used at the cohomo-

logical level in [23] to study the BRST anomaly. It would be very interesting to perform a

one-loop computation to find the Lorentz Chern-Simons form, and relate the pure spinor

supergravity constraints with those in [15].
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A. Background field expansions

From the expansion of the term 1
2πα′

∫
d2z 1

2∂Z
M∂ZNBNM

1

2πα′

∫
d2z

[
1

2
ΠBΠ

A
Y CHCAB +

1

4
Y A∂Y BΠ

C
HCBA

−
1

4
Y A∂Y BΠCHCBA +

1

4
Y AY BΠCΠ

D
HDCBA

]
, (A.1)

where HABC = (−)a(b+n)+(c+p)(a+b)3EP
CE

N
BE

M
A ∂[MBNP ],

∂[MBNP ] =
1

3
(∂MBNP + (−)m(n+p)∂NBPM + (−)p(m+n)∂pBMN ) (A.2)

and HDCBA = (−)B(C+D)∇BHDCA − (−)BCTDB
EHECA + (−)D(B+C)TCB

EHEDA.
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From the expantion of 1
2πα′

∫
d2z∂ZMJ

I
AMI

1

2πα′

∫
d2z

[
(J

I
0 + J

I
1 + J

I
2)(∂Y

AAAI + ΠAY B(∂BAAI + T̃BA
CACI) + ΠAAAI

+
1

2
∂Y AY B(∂[BAA]I +T̃BA

CACI)+
1

2
Y AY BΠC T̃CB

D(∂DAAI +T̃DA
EAEI)

−
(−)BC

2
Y AY BΠC∂B(∂CAAI + T̃CA

DADI)

]
(A.3)

From the expansion of 1
2πα′

∫
d2zdα∂Z

MEα
M

1

2πα′

∫
d2z[(dα0 + d̂α)(∂Y α + Π

B
Y C T̃CB

α)], (A.4)

where the terms quadratic in Y were written in (3.4).

From the expansion of 1
2πα′

∫
d2zdαJ

I
Wα

I

1

2πα′

∫
d2z

[
(dα0 + d̂α)(J

I
0 + J

I
1 + J

I
2)

(
1

2
Y BY C∂C∂BW

α
I + Y C∂CW

α
I +Wα

I

)]
. (A.5)

From the expansion of 1
2πα′

∫
d2zλαωβΠ

C
ΩCα

β

1

2πα′

∫
d2z

[
(λ̂αωβ + λαω̂β + λ̂αω̂β) × (A.6)

×

(
1

2
∂Y DY C(∂[CΩD]α

β + T̃CD
EΩEα

β) + Π
C
ΩCα

β

+
1

2
Y CY DΠ

E
T̃ED

F (∂F ΩCα
β + T̃FC

GΩGα
β)

+∂Y CΩCα
β + Π

C
Y D(∂DΩCα

β + T̃DC
EΩEα

β)

−
1

2
(−)DEY CY DΠ

E
∂D(∂EΩCα

β + T̃EC
F ΩFα

β)

)]
.

From the expansion of 1
2πα′

∫
d2zλαωβJ

I
UIα

β

1

2πα′

∫
d2z

[
(λαωβ + λ̂αωβ + λαω̂β + λ̂αω̂β)(J

I
0 + J

I
1 + J

I
2) ×

×

(
1

2
Y CY D∂D∂CUIα

β + Y C∂CUIα
β + UIα

β

)]
. (A.7)
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