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1. Introduction

It is a well known fact that in order to couple the Type I or Heterotic superstrings to
a generic background, the gauge groups must be SO(32) or Eg x Eg in order to have a
theory free of gauge and Lorentz anomalies. This condition is supplemented with an o’
correction to the 3-superform H, defined as the exterior derivative of the Kalb-Ramond
2-superform B. The mechanism described is known as the Green-Schwarz mechanism [I]
and the form of the corrections are of Yang-Mills and Lorentz Chern-Simons type, which is
related to the form of the counter-terms that cancel the anomalies. It is worth to note that
this mechanism for the cancellation of anomalies was discovered using the low energy limit
of superstrings. However, Hull and Witten [ noted the necessity of the Chern-Simons
modifications in order to cancel the sigma model for the Heterotic superstring.

To describe superstrings in a generic background, one has at disposal the Ramond-
Neveu-Schwarz (RNS) formalism and the Green-Schwarz (GS) formalism. However in the
first, whose sigma model was the one used in [J], it is difficult to incorporate space-time
fermions, so some elements are lacking; while in the second one can only quantize in the
light-cone gauge, loosing the manifest symmetries. Nevertheless, there is one more descrip-
tion known as the Pure Spinor (PS) formalism [f], in which a superstring can be described
in a generic background [ and does not suffer of those difficulties. The quantization of
the superstring in the PS formalism is performed through a BRST charge Qgrst, which is
nilpotent because of the pure spinor condition, to be defined later on. As shown in [[], the



classical BRST invariance impose some constraints on the background fields, in particular
on the components of H; putting them on-shell. Before pure spinors were used to describe
superstrings, integrability along pure spinor lines in superspace and loop superspace al-
lowed to find the super Yang-Mills and supergravity equations of motion in ten dimensions
respectively [f]. Because of its nature, the pure spinor sigma model is a proper description
for performing perturbative computations. Using this description it has been possible to
compute the beta functions for the Heterotic [fi] and Type II Superstring [[j], showing that
the classical BRST invariance implies in the conformal invariance.!

Because in the PS formalism one can quantize in a Super-Poincare invariant manner,
one could attempt to compute o’ corrections to the constrains in the background fields men-
tioned in the last paragraph. In particular, one can look for Chern-Simons type corrections
to the 3-superform H as mentioned in the first paragraph. This paper is concentrated
in the Yang-Mills Chern-Simons correction to H, which was also shown in [ and [IJ] to
imply the correct coupling of N' = 1 supergravity to N' = 1 super Yang-Mills. Specifically,
it will be computed corrections to the classical constraints on H by checking the nilpotency
of the BRST charge at one-loop level. It will be shown that it is a key aspect to add local
counter-terms in the action to preserve the BRST invariance at the quantum level. Those
counter-terms amounts to redefinitions of the space-time metric and the spin connection.
The redefinition of the space-time metric was noted by Sen [[[I]. Furthermore Hull and
Townsend [[[3] showed that they were necessary to preserve the world sheet supersymmetry
in the heterotic string. Since the supervielbein Fj;%(Z) appears as one of the superfields
in the pure spinor sigma model, redefinitions of this superfield are in accordance with re-
definition of the space-time metric, and as will be shown, they are important to check the
BRST invariance at one-loop.

The structure of this paper is as follows. In section 2 a brief introduction to the PS
formalism is given. In section 3 the results of [f] and [13] concerning the nilpotency of
QgrsT and holomorphicity of the BRST current at the lowest order in o/ are reobtained,
by performing a tree-level computation. In section 4 it is performed a one-loop compu-
tation to find the Yang-Mills Chern-Simons correction to the 3-superform H, explaining
the computations in a detailed way, as well as the counter-terms introduced. In section 5
the work is concluded. In the appendix are included the results of the background field
expansion used in the computation.

2. Review of the pure spinor formalism

The action for the heterotic superstring in the pure spinor formalism [ is given by

1 2 1 ma5 9% 1 pAF -
S = %/d z(iaX 0Xm + pa06 +b80> + S\ + 57, (2.1)
where the worldsheet variables (X™, 0% p,), with m = 0...9, o = 1...16, describe the

N =1 D = 10 superspace. p, is the conjugate momentum to 8. This formalism takes its

LFor further studies of the pure spinor formalism in a curved background see [E]



name from the bosonic spinor A%, which is constrained to satisfy the pure spinor condition
)\a(’ym)aﬁ)\ﬁ = 0, where v are 16 x 16 symmetric ten-dimensional gamma matrices. The
pure spinor part of the action, denoted by S, is the action for a free G 7 system, where
the conjugate momentum to A\* is denoted by w,. S7 denotes the action for the heterotic
right-moving currents and (b, ¢) are the right moving Virasoro ghosts. For the purpose of
this paper, it is worth to note that the Lorentz currents N = %/\vabw and ghost number
current J = A\*w,, satisfy

N™"(y)NP(z) — o np[nNm}q(z; — quNm}p(z) — 32 ?:[jngz,
J(y)J(z) — —ﬁ- (2.2)
These currents have OPEs with the pure spinors
NN = 36, () — a2, (23)
while the right-moving currents satisfy
F )7 ) — o f T | n O 2.4)
y-—z (¥ —2)

Physical states are defined as vertex operators in the cohomology of the BRST charge
Q = ¢ dzA*d,, where d, are the worldsheet variables corresponding to N =1 D = 10
space-time supersymmetric derivatives.

3. Lowest order constraints in o’

In this section are computed the constraints coming from the nilpotency of the BRST
charge and holomorphicity of the BRST current at tree level.

The action which describes the Heterotic Superstring in a curved background can be
obtained by adding the massless vertex operators to the flat action and then covariantizing
with respect to the D = 10 N = 1 super-reparameterization invariance [f[j. The action is
as follows

1 1 — j - _ _ _
S=5— / d22<§HaHb7]ab + 5HAHBBBA + d T+ AT Aar + dod WP
s

/\angIU[aﬁ + Aaw§ﬁ090a6> + Sy + Sj + So, (3.1)

where 114 = 0ZME4{,(2), o = 0ZMEL(Z) and E4;(Z) is a supervielbein: Gyn(Z) =
Ej‘\‘JEﬁ’ana. ZM denote the coordinates for the D = 10 N = 1 superspace (X™, §#) with
m =0,...,9and g = 1,...,16. Sy and S7, as before, are the actions for A and T =
%ICQB@A@B respectively, with A,B = 0,...,32. Ss is the action for the dilaton coupling
to the worldsheet scalar curvature. The nilpotency of the BRST charge is guaranteed in a
flat background because of the pure spinor condition. Nevertheless, when the superstring



is coupled to the curved background, the background fields must be constrained in order to
maintain this nilpotency [, [lJ). One can find these constrains by performing a tree level
computation. To set that, one perform a background field expansion [[[4] by expliting every
worldsheet field into a classical and quantum part, where the classical part is assumed to
satisfy the classical equation of motion and the quantum part will allow to find propagators
and form loops. Specifically, the following notation for the splitting will be used

ZM = X(])W+YM7 da :doc()—i_gl\on

A% = AS + A9,

Wa = Wao + L:)a,

A = gt + 9 (3.2)
So the expansion for the term 2”1(1, J d2z%8ZMEZN Gy in (B) in second order of the

quantum fiels is

1
2ma!

| - 1 —C 1~ ~ 1 s
/ d22<§8Y“8Ybnab - §3Y“YBHCT(;B“ — §8Y“YBHCTCB“ + ZaYBYCH Tes®

1— ~ 1 - g 1 D)~
+18YBYCH“TCB“ i §YBYCHDTDC“HETEB“ —_ ZYBYCH(“HD)TDCB“),
(3.3)

where T is the part of the torsion which only contains derivatives of the vielbein: fMNA =
G[MEN}A and TDCBA = —TDCETEBA—F (—)CDVCTDBA. Repeated bosonic indices in (B.9)
are assumed to be contracted with the Minkowski metric. On the other hand, the expansion
for oL fd?deEZMEMa is

2wl

1 ~ = ~ —C = 1 ~ = ~
| @2( 3,0 — d Y BT Tep® + =(dao + do)0Y BY CTe ™
2ma! 2
1 N _ _ _ ~
—guwy+¢ganDYC@dnwa+1bD@mB%
1~— ~
+TQHDYMYN8NEMBEﬂﬂ> (3.4)
In the subsequent sections, the 0 subindex will be dropped off. The expansions for the

remaining terms in the expansion of the action (B.J]) are written in the appendix. From
the first term in the last two expressions it can be read the propagators

a/s,p
x—z

Yo (2, 2)Y"(2,2) — —a/n®loglz — 2|2, da(z)YP(2) — (3.5)

3.1 Nilpotency at tree level

The propagators (B.H) allows to compute the conditions for the nilpotency of Qgrsr per-
turbatively in o’. In fact, one can easily compute a tree level diagram using the second

propagator and the fifth term in (B.J) expanding e~ in a series power, giving as a result
1, 1

Ao (w)N dg(2) = 50

A NPT 3, %(2). (3.6)

w—z



Initially one is interested in computing the tree leve diagrams coming from terms in

the expansions with 9YAY B, since they will give rise to the same kind of pole as in (B.9).
So, the contributions to the pole (w — 2)~! will be

o 1 o

1
- ANPTIC (T, © + HE -
50 (Tpa® + ﬁa)(z)+2w_z

/ /
AN T (2) + ZAaAﬁAm(;Rﬁaf(z). (3.7)

«
w—z w —

ANV H 5,

«
+

In this notation, the Torsion superfield T,” is given by
Tho" = Tpa” = Qo = Qag”, (3.8)
while the curvature superfield is given by
Rapy” = Doy’ + DpQar’ + Qo Qp’ + Dy Qae’ + Top "0y, (3.9)

where D, denotes the supersymmetric derivative. There are also other possible tree level
contractions of A%d, (w)\’dg(z) with terms including 0Y 4Y® which will lead to

1, w—=% — 1, w—=% _
— o/ —— NN (T3,¢ — HC, —o/ —_NNTTH,, 1
2 (w— 2)? (Ts 8)(2) + 2 (w— )2 v (%) (3.10)
’ w—Zz o ,5_1
—a ——= AN T Fapr.
@ (w— 2)? Al
In this notation the field-strength superfield is given by

Fopr = DoAgs 4+ DgAar + 1’5 AnyAsk + Top® Acy. (3.11)

To compute the tree-level diagrams that give rise to the above result, one need to
compute the integral

1 = (T—w 1 w—Z
/dzx(w_x)(x_z)2 = —/d%ax (x_w) = e (3.12)

From (B7) and (B.IQ) it is deduced that the conditions for the nilpotency of Qprsr
at the lowest order in o are

A NT, 5% =0, A*N Hoap =0, XN Fogr =0, XN N wsRs,,° = 0. (3.13)
These are the same set of constraints found in [[] and [IJ].

3.2 Holomorphicity at tree level

To compute the conditions for holomorphicity of the BRST current 95 = 9(A\“d,) = 0, one
must know the expansion up to first order in Y“ of the sigma model action. This expansion

for the term 2”1(1, fd%%@ZMgZNGNM is

1
4red

/ PGY oy, + TV iy + TP Y  Top nay + TP Y O Top na). (3.14)



The conditions for holomorphicity will appear as conditions for vanishing to the in-
dependent couplings H“ﬁb, Haﬁb and so on. For example, forming a tree level diagram
contracting dd,, in 0j with the third term in ), it is obtained %X)‘Hbﬁcfcadnbd. Fol-
lowing this procedure with all the terms in the expansion written in the appendix up to
order Y, it is found

1 — _
5/\a[_HbHC(Tade/dc + Tacdnbd + cha) + HBHC(Tﬁab - Hﬁab)
T (T + Hoap) — DPTT Hoy g — 2d5T0 Teo” — 2dgI0 T,
11T Fyr + 21197 Fgay + 20w, T Ry
—I
—2dg ] (DaW) — W5 Aak f175 — U1,
i 77,8 St v JK
+F2XwyJ (Qas"Urs° — Qap’Urs” + Ugp” Aar f1
—W? Rsapy — DaUrs")] = 0.

Since T is related to J" through " = —7IWI°‘ by using the equation of motion for the
worldsheet field d,, in (B.1]), one arrives at the following set of constrints for holomorphicity
of the BRST current at the lowest order in o/

Ta(bc) = —Hape = Taﬁc - Haﬁc = Tcaﬁ =0, )\a)\'@Rdaﬁﬁf =0,
1
Fapr = _§W}YH’Y045’ Fopr = _WPYT'yocba
VQW[ﬁ - Taﬁ’YW;{ - UIQ'B, Aa)\ﬁ(vaU[afy + ROFYBJW}Y) =0. (315)

This was the same set of constraints found in [[] and [[J].

4. Yang-Mills Chern-Simons corrections

In this section o’ corrections to the nilpotency constraints (B.13) will be computed. In the
first subsection it is explained how to compute all of the twenty possible contributions to
the nilpotency of the BRST charge. In the second subsection, it will be explained how,
adding some counter-terms, one can find the Yang-Mills Chern-Simons 3—form.

4.1 One-loop corrections to the constraints

In the expansion for the HAleAI term, the following will play a role in the compu-
tation: HAYOng(aBAAI + Tpa®Acr)(z) and 8YA7£AA1(y). Contracting them with
Ad, (w)A?dg(z) one can form a 1-loop diagram

5 (D, Apr + j;'}-ECACI)

)\'Q' -I° - =
dy(w) Y7 Y dy(2)

(4.1)



The dashed lines denote background fields while the continuous lines denote the con-
tractions using the propagators. So one can compute how these terms contribute to the
nilpotency of Qprsr. To determine the coefficient for this diagram, note that there is an
1/2 from the expansion of exp[—S] and there is a factor of 2 coming from the possible ways
to put the superfields at = or y. Denoting the integration over the world-sheet fields by
[[Dwsf], it is found

N ()N ()1 = m / (Duws f] / PadyNd, (w)Nds (=)

IEY (D, Apy + Ton” Apr) (2)0Y A (y) T (2) T3 (4)
0/2

= (2w)2)\a/\ﬁHgAOJ(DﬁAc[—I—TvchAD[)(z) x
1 1
x | d?xd?
/ Yw—22E—y) @-p?
0/2 ~

(27m)2 NN Apr(DaAct + Tac” Apr)(2) x

1 1
d>zd? 4.2
|y 4.2)

— — N2 sIJ
where J g(a_:)J g (y) — %T. The second line in the last equation is obtained from minus
the first by interchanging o with 8 and w with z. So, just one of the integrals will be
computed.

2.2 1 o 23: 2 1 5 1
R e Rl R e e L

- 2.2 52(@/—2)
=on [d Vw22 -p)
- Qw/d%j(w—x)lz(a_j—é)’ (4.3)

where in the second step an integratetion by parts has been performed with respect to .
In the last integral one can integrate by parts with respect to x to obtain

5 o 1 1 __(27r)2
T o

Then a first contribution to the check of nilpotency will be

s AXNP

w—z

Ado (w)A\Pds(2)1 = —2a 11§ Agr(DaAct + Tuc® Apr)(2). (4.5)

A second contribution comes from contracting A*d, (w)\?dg(z) with 8Y'77£A71(a:)><



8Y575 Asy(y) as shown in the diagram.

(4.6)

To determine the coefficient of this diagram, note that there is an 1/2 coming from the
Taylor expansion of exp(—S). So it is found

Ao (w)A g ()1

0/2 ANB (2 )/d2 2y [ Aar(x)Apr(y)  Apr(@)Aar(y) 1
2 (2m)? (w—2)2(z —y)?  (w—y)*(z]| —2)? (x—(iJ);)

The second term in the integrand is obtained from minus the first by interchanging w
with z and a with 8. The integral left to solve is

(e Aa(@)As()
F‘/d dy(w—x)?(z—y)?(af—g)?
_ 2 9 H 30Aa1( x)Apr(y)
= /d Y D) w— 2%z — y)?
2, 2 Aar(@)As1()0u0%(x — w)
+/d d“y G—2)(—p) ) (4.8)

where it has been integrated by parts with respect to . The first and second integral on
the right hand side of ({.§) can be integrated by parts with respect to y and x to obtain

€00 Aas (2) Agy ()82 (y — )
— 9 21, 2
= on [ dtadty =S TR
on | Pud? 190 Aar(z) Apr (y)82 (z — w)
on [ iy G-D-9°

(4.9)

Evaluating the superfields in z, using (B-IF) in the first integral and integrating by
parts with respect to y in the second, one obtains

r—_(2 LH@A Aor(e) - 2 11000404 4.10
Then
w—z . 2
A dg (w)Ndg(2) = —a? o Z)zxaAﬁHCaCAalAm(z) — ——XN0c Aar Api (2)
R W—Z = 4 3 o2 ay B
to (w — Z)za/\ A AarApr + - za/\ N A1 Apr(2) (4.11)



A third contribution to the nilpotency property comes from contractions of Hé‘j;A Al
twice 8YA7£A Ar and A%, (w)\Pdg(2) giving rise to the diagram

(4.12)

Since one is at order S3 in the expansion of e~ there is an % and also a factor of
3 from the possible ways to put the superfields at z, y and wu, so there will be a —1/2
coefficient in front:

1 ~ ~
o B - 2,72, 32, B
Ao (0N (D = ~ 5 / (Duws f] / PadyPurd, (w)\Pdy(2)
=1 —=J =K
11§ Ty Act (2)0Y P Ty Ap s (y)0Y P Ty Apk (u).
1 650765°
_ NBIIC A A A /222 a 98
sampar N Mo dordydu(z) [ diediyd | G a0
84°65" —I, =], =K
— J J J . 4.13
e BT T ) (1.13)
It is not hard to verify that
_ _J K (a/)stJK
Jo(x)Jo(y)dy (W) = ————F————— + .., 4.14
where by ... is meant less singular poles which are not important in this computation.
Then the type of integrals that must be computed are
1
I = /d2xd2yd2u - 4.15
! R EE e (419)

The integral in x gives

/dz!ﬂ% = /d2338x :f_zi — ! — = —271'3{_1: (4-16)
(z —79)(x—1u) T—y)xT—1 g—u
so (E19) yields

1 Y—u
Iy =27 [ d*yd*ud : 4.17
== [ttt (515 ) = 4
Integrating by parts in y, ¥ and then in u it is found 'y = (27)3/(w — 2). In this way ([7)
gives
o 8 ne AN ke
A da(w))\ dﬁ(Z)IH = —(a) Ef HO AC]AOCJAﬁK(Z). (4.18)



Note that a fourth loop could be formed with %EYO‘YQ (T + H3a), c/l\ongf‘ and
OYO‘jéAOJ as shown in the diagram below.

(4.19)

In this case, one is also at the order S3, so there is an % which is cancelled by the

symmetry factor responsible for the localization of the superfields, either at x, y or u. The
1
1
possible ways of contraction:

coming from the coefficient of the term with II¢ is cancelled by a symmetry factor of the

0/2

(27)?

X da(w)Ndg(2)rv = — AN Ty + H50) W7 Agr(2) %
82 (x —w)

(z —u)*(y —2)(y — u)?

X / d*zd®yd*u (4.20)

Integrating x one has to solve

1 Py —w 27)?
[ vt ~ o [ et g = a4

Then

0/2

Ao (w)N dg(2)1v = NN (Toa5 4 HCos) WP Agr(2) (4.22)

w—z
Considering the same last diagram but with the vertex %H”/Hwa instead of %HC(Tgac—i—
Hpg,©), gives a fifth contribution to the coupling to IT7

0/2

2 dy (w)Ndg(2)y = NN H s WP Agr(2) (4.23)

w—z

A sixth contribution can be formed with %HCEYAYB (fBAC + H°py4) and twice
OYAjéAAI:

. Ass
A , ST T et AP
do(w) Y7 (u) dY S aye Y dy(z)
Hg(fvfd :" Hdvf)

(4.24)

— 10 —



There are 8 possible ways of making the contractions, a 3 factor from the possible ways
to put the superfields at x, y or u, an 1/3! because one is at S® in the expansion, and the
factor of 1/4 of the II¢ term gives a one coefficient:

12

a ~
Ado (w) A\ dg(2)v1 = ) NN Tyo© + HC0) Aar Apr (2) x
82 (x — w) 1

x [ d*zd*yd*u 4.25

[ Eatvu S a4
The integral is the same as in ({£.2(), so the answer is
2 -

Ado ()N dg(z)v1 = wo‘_ zAWHC(TdaC + H o) Aar Apr(2). (4.26)

In the same way, the last diagram but with the vertex %H“’Hw BA Instead of %HC(TB A€+
Hp4°) leads to a seventh contribution

12

)\ada(’w))\ﬁdﬁ(z)vu = )\a)\ﬁHA/nydaAd[Aﬁ[(Z). (4.27)

w—z

An eight contribution can be formed with —%EY“Yﬁ Hcfcga and twice 8YA7£A AL

. CAsy
A , . A9
dy(w) Ye(u)ay’s oye 0Y? dg(z)
ICN
1§ Tee! (4.28)

There are 4 possible ways of making the contractions, a 3 factor from the possible ways
to put the superfields at x, y or u, an % because one is at S® order in the expansion and
a factor of 1/2 of the I1* coefficient, giving at the end a 1 coefficient:

12

X do(w) A\ dg(2)ymn = — (2n)?

)\aABHCTCadAngd[(Z) X

o 5 o —2m0%(u—m) 1
x/d xdyd u(w—az)(z—y)2 CEIER (4.29)

Integrating in u, the integral one has to solve is

2,72 1 — 9o 2.2 8 (z — w) _ (2m)?
| Pty P g e G

then

2

Ao (w)N d(2) v = AN Too A Agr(2). (4.31)

w—z

Let’s consider the couplings to .

— 11 —



A diagram like ([E19) can be formed with 1IT°0Y4Y# (Tga®— HCpa), 8YA7£AAI and
JOZj;WIa. There are 4 possible ways of making the contractions, a 6 factor from the possible
ways to put the superfields at z, y or u, an % because one is at S% order in the expansion
and a factor of 1/4 of the II° coefficient, giving at the end a 1 coefficient to this ninth
contribution:

12

(2m)?

X do(w)Adg(2)x = XN (T — Hsa) W7 Agr(2) %

1
X /dza:d2yd2u

(w—2)*(z —u)*(y — 2)(y — u)?

Integrating y by parts, one is left to solve the integral

2,72, 12 5 (y —x) — 9 2, 1
e e e B K e e

The right hand side in the last equation is the same as (B.13), so

(4.32)

W — % e
(w—2) NN (T50 — Hsa) W7 A (2). (4.34)

Ao (wINdg(2)1x = —a®
In the same way, considering vertex —%ﬁVHVB 4 instead of —%ﬁc(ﬁg A¢— Hpa®) leads
to the tenth contribution

w z —
—— XN Hoy5o WP Ay (2) (4.35)

Ady (w)NPdg(2)x = o? @ __Z)

An eleventh contribution comes from a diagram like ({.24) which can be formed with
%ﬁcaYAYB (TB A¢— H p4) and twice Z?YA(‘)ng A7 - There are 8 possible ways of making
the contractions, a 3 factor from the possible ways to put the superfields at x, y or u, an
% because one is at S% order in the expansion and a factor of 1/4 of the II° coefficient,
giving at the end a + coefficient:

12

Ay (w)Ndg(2)x1 = (27T)3AaAﬁﬁC(fdac — HCq)AarApr(2) x
1
x | dzd*yd*u ——. (4.36
/ e T Ry ) M
The last integral is the same as the integral in ([.3), so the result is
A do (W)X dg(2)x1 = —aaﬁA%ﬁﬁc(fdac — HC)Aar Agi(2). (4.37)

In the same way, a twelfth contribution comes from considering the vertex —iﬁﬁ/H,yB A
instead of the vertex %ﬁc(TBAC — Hp4), leading to

W—2Z |4\
NN Hy g0 Aar Agr (2). (4.38)

a 3 — 52
Ao ()N dg(z)x11 = @ e

— 12 —



Another diagram like (4.2§) can be formed with —%8Y“Yﬁﬁ01~bg“, 8Y“7£Aa1 and
aYajéA,ﬂ, giving rise to a thirteenth contribution

w—z —C
NN T Y Aar Apr (2). 4.39
(w =2 ca” AdarApr () (4.39)
A fourteenth contribution and the last for the couplings to T can be formed with
—daYBﬁCT(;BO‘ and twice Y AT A g

A (w)Ndg(2)xm = —a?

~I
AL ,
do(w) Y(u)rd, Y
I
o Tee? (4.40)

giving as result

B 5 )\O‘)\ﬁﬁCAﬁITCaVAyI (4.41)

« /3 — 2 /
A da(w))\ dﬁ(Z)XIV « (w_z)

Let’s consider the couplings to 7(1)
A fifteenth contribution to the nilpotency will come from a diagram formed with
LoYAY BT (95 Ayr + TeaCAct), dudsWe and 9Y Ty Aar:

A% ]

d(w)  Y(u)dY* d, BY? dy(2)

—K ! =
To (D Agyc + TosC Ack) (4.42)

There are 4 possible ways of making the contractions, a 6 factor from the possible ways
to put the superfields at x, y or u, an % because one is at the S° order in the expansion

and a factor of 1/2 of the jé coefficient, giving at the end a 2 factor:

205/2 —I ~
Ad (w)Ndg(2)xv = W)\O‘ABJO(D(VAQ)I + TyoC Ac) W] Apy(2) ¥
1

2 2 2
8 /d T~ PG — Py — D)@ -9

The last integral is again the same as in ([£.39), so the result is

(4.43)

W—Z |46 ~
——— AN To(Diy Aayr + Toa“ Acr) W) Agy(2).  (4.44)

(% ﬁ — _2 12
Ao (W) N dg(2)xv a w—2)
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A sixteenth contribution can be formed with %8YAY37(I)(0[BA At Ts 4%Acr) and
twice 8YA7£A AL

A% ]

d(w) Y7(u)l8Y7 8" DY dy(2)

=K ' '
Jo (D Apk + T Ack) (4.45)

There are 8 possible ways of making the contractions, a 3 factor from the possible ways
to put the superfields at x, y or u, an % because one is at the S2 order in the expansion

and a factor of 1/2 of the 7(1) coefficient, giving at the end a 2 coefficient:

2

A% dg (w)Md(2)xv1 = 2(547)?,”%75(6[014&]1 + ToaP App)Acs Agy(2) x (4.46)
1
x | dxd*yd*u 5
/ (w—2)*(z —u)?*(y — z)(y — u)?

which contains the same integral as before, so the result is

w—z

z)
Finally, let’s consider the couplings to d,.
A seventeenth contribution can be formed with %dagYﬁY'yTwa, dajéVVf‘ and
aYajéAal:

Ao (WA dg(2)xv1 = —207% NN T (O Ay + TeaP Ap1)AcsAgy(2).  (4.47)

(w

(4.48)

There are 4 possible ways of making the contractions, a 6 factor from the possible ways
to put the superfields at x, y or u, an % because one is at the S® order in the expansion
and a factor of 1/2 of the d, coefficient, giving at the end a 2 coefficient:

12

Ao (W)X dg(2)xvir = _ZW)‘Q)‘%’YTVMWW}SABI(Z) X
82 (x — w)
x | d*xd*yd*u 4.49
[ ol 49
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Integrating x, the integral that is left to solve is

1 82 (y —w) (27)?
2, 12 — 2,42 S
/dydu(z—u)z(y—w)(y—u)z_ 27T/dydu(u—y)(z—u)2 p— (4.50)
So,
«a 8 20/ avB.g T )
A da(w))\ dﬁ(z)XVH = w— Z)\ A d»YT(;aA/WIAgj(Z). (4.51)

An eighteenth contribution can be formed with %dOEYB YCTVC B and twice 8YA7£A AT

Act . CAsa
AL — S N
do(w) Y7(u) Y7 aye OY? dg(z)
dl“/fnfw

(4.52)

There are 8 possible ways of making the contractions, a 3 factor from the possible ways
to put the superfields at x, y and u, an % because one is at the S order in the expansion
and a factor of 1/2 of the d, coefficient , giving a 2 coefficient:

12

Ado ()N dg(2)xvin = QWAaAﬁdwfcawAdAﬁI(z) X
82 (x — w)
x | dzd*yd*u . 4.53
/ T
This integral is the same as in (4.50), so the result is
20/? ~
)\ada(’w))\ﬁdﬁ(z)xvnl = —w — z)\a)\ﬁd-chaﬁ/AdAﬁ[(Z). (4.54)

Because of the pure spinor condition, the action is invariant under dw, = (Ab’yb)\)a,
so Urp = Us,P + %U ch(’yCd)aﬁ . It can be formed a nineteenth one-loop diagram by
contracting Jng 7(x) with aYajéAa,:

X)) Jo(y) el . N8
do(w Y ds(2)
(4.55)
giving the contribution
a/2
Ao (wINdg(2)xrx = —2 AN, 60,7 AUt (4.56)

w—z
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Similarly, a diagram like ([E5§) can be formed contracting 2 N “bng 1ab(7) With 8Y°‘75Aa I
giving as contribution

12
A% dg (w)NPdg(2)xx = 1a

5 AN (o Uler Asr (4.57)

Now, the results will be summarized by adding up the twenty one-loop contributions
to the tree level constraints. Each independent worldsheet coupling will receive corrections,
as indicated below:

Corrections to the the coupling to I1¢

1 o

w_ Z)\a/\ﬁﬂc[(Tgac—l-Hcga)—4a/A51(DaAc[+TacDAD[)—1—20/145]60140{[ (4.58)

20/ FIIB A1 An g Apic + 20/ (Tos€ + He o5)WE Ay
+20/ (Tyo® + TeaNed + HC4a) Aar Apr) (2).

Corrections to the coupling to II-

1, w—z e
—ia/ﬁvﬁn (Tsa® — HCap) — 20/ AgrOcAar + 20/ (T5a® — Heso)WiAg (4.59)

120/ (Tgo® + ToaNed — Hoao) Aar Apr — 40’ AgrTea Y Ay (2).

Corrections to the coupling to 117

1 o ~
§EA°‘A5HV[HWQ — 40/ Agr (Do Ay + T ” Apr)
—QCMIAﬁ[D-yAOJ — 2a/fIJKA»Y]AaJA5K

+20/H'ya6W15AﬁI + 20/(T’yozd - H’yocd)AdIAﬁI](Z)' (460)

Corrections to the coupling to II'

1 D > _
§a/ (;U— 5)2 )‘a)\ﬁﬂ’y [H“{aﬁ - QCYIABID’YAOJ + 20/H’Y5‘1W16A51 (4'61)

20/ (Hyo + Toa®) Aar Apr + 40/ AprT,00 Asr] (2).
Corrections to the coupling to d,

a/

- Z)\a)\ﬁdfy [Tgaw + 2a’f5a7WfAﬁ1 — 2a'fca7AcIA51 — 2a/U]OCPYA5[]. (4.62)

Corrections to the coupling to 7é

+20/ (O Aags + TeaP Ap1) Acs Apsl(2).  (4.63)
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4.2 Addition of counter-terms

Let’s now concentrate in finding the Yang-Mills Chern-Simons 3—form by adding appropi-
ate counter-terms. Keeping in mind the lowest order in o/ holomorphicity constraints
Tove + Taeh = 0 = Hgape; the conditions for nilpotency at one loop look like

From the coupling to II¢

)\a/\ﬁ[(Tﬁac + Hcga) — 4a/Ag](DaAc[ + TVQCDADI) + 20/14518014&1 (4.64)
—2d/ f17K A Ao s Apk + 20/ (Tos® + Heos) W17 Agi](2) = 0.

From the coupling to II°

XN (T — Hp) — 20/ AgrOcAar (4.65)
+2a’(T5ac — HC(;Q)WIJAQI - 4()/145[’?00;/147]](2) =0

Adding ({.64) and ([l.65) gives the condition

/\a/\ﬁ [Tﬁac — ZO/ABI(DQAC[ + TVaCDAD[)
—a/fIJKAc]AaJAgK + 20/Ta50W15A51 — QQ/A[;[TCOCWA»Y]] = 0. (466)

Substracting ({.64) and ([.65) gives the condition

)\a)\ﬁ[HCﬁa — QCMIAQI(D[QAC]I + TQCDAD[)
—O/fIJKAc[AaJAgK + ZCJ/HO“;CWIJAQI + QQ/ABITVCQWAW[] = 0. (4.67)

Now, suppose that a counter-term of the form % f d220ZMoZN AnrApr is added
to the action, where K7 is a constant to be determined. This amounts to redefine the
space-time metric Gy n — Gun + 20/ K1 Ay 1Anr. The expansion of this counter-term
will contain the terms
oo

_ _ 1~
Se / d*z [HYAGYBABIAAI + OYATI® A Y © <acA AT+ 5TCADADI>

+5YAﬁBYC(8CABI + TesP Apr)Aa; (4.68)
+149Y B AR YO (80 Aar + ToaP Apy)

_ 1~
+II49y By © <8CABI + §TCBDADI> AAI]

which can be used to compute tree level diagrams contracting with )\a(fa(w))\ﬁ c/l\g (z). How-
ever this diagrams will contribute to the order o/?, entering at the same foot as the one-loop
diagrams. The result of these tree level diagram is

w—Zz — ~ ~
—O/2K1 m/\a/\ﬁHC[AC[(D(aAﬁ)[ + TagDAD[) — 2A/BI(DQACI + TaDDAD[)](Z)
AXNO

w—z

0/2K1 HC[AC](D(OCAB)[ + TagDAD]) — 2A51(DQAC] + TOCCDADI)](Z)

_ K
NN Ar Api(2) + 2a'2w—_1ZaAaAﬁAMAM(z) (4.69)

(w—2)
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Then, (4.64) and ({.65) will be modified respectively to

AN (Ta® + HC o) — 40/ A (DAt + TacP? Apr) + 20" AgrdeAar (4.70)
—20/ K A Ang Apic + 20/ (Tos + HCo5) WP Agy
+20/ K1 Acr(D o Apyr + Tog® Apr)
—40' K1 Agr(DaAcr + TP App)(2) = 0.
AN [(T0¢ — HC o) AprOeAnr + 20 (Tso® — Hso)WP Agy (4.71)
—20" + 20" K1 Acr (Do Ay + Tos” Apr)
—40/ K1 A (Do Acr + Tuc” Apr) — 40/ AgrTee Y Ayt](2) = 0

One can add ([E70) with (£.79) to obtain
AN T3¢ — 20/ Agr(DaAcr + Toc” Apr)
o IR A r Ay Agre + 20/ Tos W Agy
+20/ K1 Acr(D o Agyr + Tag” Apr)
—40' K1 Agr (Do Acr + Tac” Apr) — 20/ AgrTon Ayr] = 0. (4.72)

If K3 = —1/2 and using the constraint AX\B Fopr = 0 one arrives at
)\a)\ﬁ[Tgac + 2a’Ta50WfAﬁ1 - QQ/Aﬁ[TCOﬂA-y]] =0. (473)

Furthermore, forming a three-level diagram with &\aYﬁﬁCfcga and 0Y“0Y# AgrAar
in ({.68), with precisely this value for Kj one can cancel the term proportional to
AMTCOCVAVI in (.73) and ([.67). Also, with this value for K, the counter-terms in the
last line of (f.69) will cancel the contributions proportional to AY and A in ({L.11]).

Note that it can be added a second counter-term of the form % f d?zd,0ZM Ay, Wi
This amounts to redefining the supervielben Ep® — Epn®+o/ Ko Ay Wi, After expanding

this counter-term, one can form a tree-level diagrams contracting it with igYVY‘SHC(T 5+
Hs\©):

T+ Ha®)_ o Ay WV
ka---- “\. "” ----- AIB
do(w) OYY%(z) d.OY"(y) ds(z)
(4.74)
giving a contribution to the nilpotency
12 )\a)\ﬁ c c c Y
o ng — zH (Ton + Hon YW ] Agr(2), (4.75)
while contractions with %GY“/Y‘SﬁC(TMC — Hs,) will form the diagram
o = He) permis
e Seo - 23
du(w) OYYo(x) dOY(y) ds(z)
(4.76)
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which gives the contribution

W—Z oy B7C c c
—0/2K2mA NI (T © — Hon )W, Apr. (4.77)
It can be easily checked that for Ko = —1, adding ([.75) and ((.77) to ({.64) and ({.63)

respectively; then )\a)\ﬁTagc will not receive o corrections, i.e. this second counter-term
cancels the o/ correction in ([.73); while the corrections for H,z® are

XNNP[H o, — 20/ Agr(Dig A + TucP Apr) — o F175 A An s Agic) = 0. (4.78)

Now, the couplings to II7 also receive corrections from the two counter-terms just
introduced. Some of these corrections come from the coupling to I1¢ in (F.69) when C is
~. Another correction comes from the tree-level diagram

1" Hos

~
~ -
~ b

A SR M
do(w) Y ?Y?(x)

(4.79)

Adding those corrections and using the holomorphicity constraint F,g; = —%W]ng,
it can be checked that the o corrections to the coupling to IT7 are

AN |:Hﬁ/5a — 2a'A51 <D(QA4/)[ + TOWDAD]> — a/fIJKA»Y]AaJAgK] =0. (480)

Let’s now identify the Chern-Simons form. It can be used the lowest order constraints
in o’ coming from nilpotency condition A*\°F,5; = 0 to write ([E78) in the desired form.
Since A*\F = N\

A@)\B [Hcaﬁ _ O/TrA[a <D5AC} + %Tﬁc]DADO — 2a/fIJKACIAaJAﬁK] (2) =0 (4.81)
Since 2fIJKAC]AaJAﬁK = %TTA[CAQAQ} then
2 1 ~
AN |:Hca5 —dTr <A[OCD5AC} + gA[cAaAﬁ] + §A[QT56}DAD>:| (z) =0, (4.82)
which is the desired form. Similarly, ({£.80) can be written as

N 2 1. ~
)\ /\6 |:Ha5-y — O/TT‘ <A(o¢DﬁA'y) + gA(—yAaAﬁ) + §A(QT5,Y)DAD>:| (Z) =0. (4.83)

Adding a further third counter-term —% f d2z)\°‘w55Z M AnrtUro”, which amounts to
redefine Qu0” — Qra® — &’ ApiUr”; and thanks also to the other two counter-terms
added, can verify that neither A\ To3" = 0 nor AX\G Fopr = 0 will receive o/ corrections.
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5. Conclusions

The process of finding the Yang-Mills Chern-Simons correction to the 3-superform H from
a string computation has been successful, in agreement with the studies of super Yang-
Mills and supergravity couplings [, f] and [IJ]. It is interesting to note that to preserve
worldsheet symmetries, some redefinitions of the superfields are in order. Particularly, it
was found that for the pure spinor sigma model, both Ej;* and Ejp;“ should be redefined.
The redefinition of the second one could not be found using the other descriptions for the
superstring.

The procedure used in this paper is suitable for computing the Lorentz Chern-Simons 3-
superform in a pretty similar way, because there is a direct analogy of the terms 0ZM 7'A MI
and /\O‘wggZ MO 1o” in the action. In that case, diagrams formed by contractions of terms
with three quantum fields would contribute. Work in this direction is very interesting,
because a solution recently [[[§] has been claimed for the old debate about the inclusion
of the Lorentz Chern-Simons-form in N = 1 D = 10 supergravity and the o’ corrections
to the supergravity constraints. See [[[d—[L§] for the perturbative approach and [L9—-PJ] for
the non-perturbative approach. The pure spinor formalism was also used at the cohomo-
logical level in [PJ] to study the BRST anomaly. It would be very interesting to perform a
one-loop computation to find the Lorentz Chern-Simons form, and relate the pure spinor
supergravity constraints with those in [@]
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A. Background field expansions

From the expansion of the term 5= f d2z%8ZMgZNBNM

2mwa’

1 - 1 _
P / &z [iﬂBHAYCHCAB + ;YY" Hepa

—iYAEYBHCHCBA + iYAYBHCﬁDHDCBA , (A1)
where Hpc = (—)ubtm+etn)@t)3pl EN EX O By py,
1 m(n-+p) p(m+n)
G[MBNP] = g(aMBNp + (—) OnNBpy + (—) 8pBMN) (A.Q)

and Hpepa = (—)BCHPIVpHpoa — (—) P TppP Hpoa + (=) P BT TopP Hppa.
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From the expantion of ﬁ S dzzE?ZMjIAMI

/d2z [(jé + 7{ + j;)(@YAAA[ + HAYB(aBAA[ + TBACA(]]) + HAAA[

2ma/

1 ~ 1 ~ ~
+58YAYB(a[BAA]]—I—TBACACI)—I- §YAYBHCTCBD(8DAAI +TDAEAE1)

_\BC ~
—%YAYBﬂcaB(acAAI +TeaPApr) (A.3)

From the expansion of 5 S d?zd,,0ZM ES;

2wl

2ma!

/ 22[(duo + d) (FY + TPV CT0p")), (A.4)

where the terms quadratic in Y were written in (B.4).
. —I
From the expansion of 5= i d’zd,J wr

2wal

1

2ma!

o~ - — 1
/d% [(dao +d) T+ T+ T3) <§YBYCOCOBWF + Y W + Wf‘)} . (A5)

From the expansion of = f d2z)\o‘wgﬁCQ(;a5

2wal

2ma/

/ a2z [(X%g + M\ + A*Bg) x (A.6)
1— N _
X <§8YDYC (Oc1e” + Tep®Qpa’) + 00’
1 o~ -
+§YCYDHETEDF(8FQC¢IB + TrcQaa)
+IYQca? + TCY P (0pQ0a” + ToePQpa®)
1

5(—)DEYCYDﬁEaD(aEQCaﬁ + TECFQFaﬁ)ﬂ .

From the expansion of L f d2z)\°‘w57]U 1a”

2o’

1 ~ ~ o~ — — —
= /dzz [(Aawg + XN%wg + \Wg + )\O‘wg)(,](l) + J{ + Jé) X
1
X <§YCYD6D8(;UM5 +YC0cU" + U,aﬁﬂ . (A7)
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